Cremona's table of elliptic curves

Curve 23120v1

23120 = 24 · 5 · 172



Data for elliptic curve 23120v1

Field Data Notes
Atkin-Lehner 2- 5+ 17- Signs for the Atkin-Lehner involutions
Class 23120v Isogeny class
Conductor 23120 Conductor
∏ cp 2 Product of Tamagawa factors cp
deg 73440 Modular degree for the optimal curve
Δ 5580605952800000 = 28 · 55 · 178 Discriminant
Eigenvalues 2-  0 5+ -2  1  0 17- -3 Hecke eigenvalues for primes up to 20
Equation [0,0,0,-78608,7683932] [a1,a2,a3,a4,a6]
Generators [202:218:1] Generators of the group modulo torsion
j 30081024/3125 j-invariant
L 3.8546986903434 L(r)(E,1)/r!
Ω 0.41522688990831 Real period
R 4.6416775792081 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 5780b1 92480eh1 115600cg1 23120ba1 Quadratic twists by: -4 8 5 17


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations