Cremona's table of elliptic curves

Curve 23700s1

23700 = 22 · 3 · 52 · 79



Data for elliptic curve 23700s1

Field Data Notes
Atkin-Lehner 2- 3- 5- 79- Signs for the Atkin-Lehner involutions
Class 23700s Isogeny class
Conductor 23700 Conductor
∏ cp 27 Product of Tamagawa factors cp
deg 15120 Modular degree for the optimal curve
Δ 13331250000 = 24 · 33 · 58 · 79 Discriminant
Eigenvalues 2- 3- 5-  2  0 -1 -3 -1 Hecke eigenvalues for primes up to 20
Equation [0,1,0,-1833,29088] [a1,a2,a3,a4,a6]
Generators [27:3:1] Generators of the group modulo torsion
j 109035520/2133 j-invariant
L 6.8285918119811 L(r)(E,1)/r!
Ω 1.2587517315504 Real period
R 1.8082972309852 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 3 Number of elements in the torsion subgroup
Twists 94800bz1 71100ba1 23700f1 Quadratic twists by: -4 -3 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations