Cremona's table of elliptic curves

Curve 24255bs6

24255 = 32 · 5 · 72 · 11



Data for elliptic curve 24255bs6

Field Data Notes
Atkin-Lehner 3- 5- 7- 11- Signs for the Atkin-Lehner involutions
Class 24255bs Isogeny class
Conductor 24255 Conductor
∏ cp 16 Product of Tamagawa factors cp
Δ 49034635528725 = 39 · 52 · 77 · 112 Discriminant
Eigenvalues  1 3- 5- 7- 11-  2  2 -4 Hecke eigenvalues for primes up to 20
Equation [1,-1,0,-1344697209,-18979168274060] [a1,a2,a3,a4,a6]
Generators [7461193656:129762667747:175616] Generators of the group modulo torsion
j 3135316978843283198764801/571725 j-invariant
L 6.8244921708895 L(r)(E,1)/r!
Ω 0.024931214129168 Real period
R 17.108302807507 Regulator
r 1 Rank of the group of rational points
S 4 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 8085g5 121275en6 3465i5 Quadratic twists by: -3 5 -7


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations