Cremona's table of elliptic curves

Curve 24768bn2

24768 = 26 · 32 · 43



Data for elliptic curve 24768bn2

Field Data Notes
Atkin-Lehner 2- 3+ 43+ Signs for the Atkin-Lehner involutions
Class 24768bn Isogeny class
Conductor 24768 Conductor
∏ cp 16 Product of Tamagawa factors cp
Δ 6543507456 = 217 · 33 · 432 Discriminant
Eigenvalues 2- 3+  2 -2  6  6  0  8 Hecke eigenvalues for primes up to 20
Equation [0,0,0,-684,-5680] [a1,a2,a3,a4,a6]
j 10000422/1849 j-invariant
L 3.781842661726 L(r)(E,1)/r!
Ω 0.94546066543156 Real period
R 1 Regulator
r 0 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 24768g2 6192d2 24768bo2 Quadratic twists by: -4 8 -3


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations