Cremona's table of elliptic curves

Curve 24794s1

24794 = 2 · 72 · 11 · 23



Data for elliptic curve 24794s1

Field Data Notes
Atkin-Lehner 2+ 7- 11- 23+ Signs for the Atkin-Lehner involutions
Class 24794s Isogeny class
Conductor 24794 Conductor
∏ cp 2 Product of Tamagawa factors cp
deg 334080 Modular degree for the optimal curve
Δ -111860479214747648 = -1 · 229 · 77 · 11 · 23 Discriminant
Eigenvalues 2+  3  0 7- 11-  0  2 -4 Hecke eigenvalues for primes up to 20
Equation [1,-1,0,-24607,16166093] [a1,a2,a3,a4,a6]
Generators [115741908:5697550025:46656] Generators of the group modulo torsion
j -14006234957625/950798385152 j-invariant
L 7.2080323083046 L(r)(E,1)/r!
Ω 0.27518585406192 Real period
R 13.096662131991 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 3542h1 Quadratic twists by: -7


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations