Cremona's table of elliptic curves

Curve 25080c2

25080 = 23 · 3 · 5 · 11 · 19



Data for elliptic curve 25080c2

Field Data Notes
Atkin-Lehner 2+ 3+ 5+ 11- 19- Signs for the Atkin-Lehner involutions
Class 25080c Isogeny class
Conductor 25080 Conductor
∏ cp 32 Product of Tamagawa factors cp
Δ 4541426208000 = 28 · 32 · 53 · 112 · 194 Discriminant
Eigenvalues 2+ 3+ 5+ -2 11-  4 -4 19- Hecke eigenvalues for primes up to 20
Equation [0,-1,0,-4676,-66540] [a1,a2,a3,a4,a6]
Generators [-34:228:1] Generators of the group modulo torsion
j 44177397542224/17739946125 j-invariant
L 3.7579410082437 L(r)(E,1)/r!
Ω 0.59777204980611 Real period
R 0.78582233174473 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 50160l2 75240bm2 125400cz2 Quadratic twists by: -4 -3 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations