Cremona's table of elliptic curves

Curve 25232c1

25232 = 24 · 19 · 83



Data for elliptic curve 25232c1

Field Data Notes
Atkin-Lehner 2+ 19- 83+ Signs for the Atkin-Lehner involutions
Class 25232c Isogeny class
Conductor 25232 Conductor
∏ cp 8 Product of Tamagawa factors cp
deg 302720 Modular degree for the optimal curve
Δ -1456121520253952 = -1 · 210 · 192 · 835 Discriminant
Eigenvalues 2+ -3  4  3  3 -4  5 19- Hecke eigenvalues for primes up to 20
Equation [0,0,0,26357,811210] [a1,a2,a3,a4,a6]
j 1977478112299644/1421993672123 j-invariant
L 2.4330163769761 L(r)(E,1)/r!
Ω 0.30412704712202 Real period
R 1 Regulator
r 0 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 12616c1 100928ba1 Quadratic twists by: -4 8


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations