Cremona's table of elliptic curves

Curve 25270j1

25270 = 2 · 5 · 7 · 192



Data for elliptic curve 25270j1

Field Data Notes
Atkin-Lehner 2+ 5- 7- 19+ Signs for the Atkin-Lehner involutions
Class 25270j Isogeny class
Conductor 25270 Conductor
∏ cp 44 Product of Tamagawa factors cp
deg 95040 Modular degree for the optimal curve
Δ -271249682604740 = -1 · 22 · 5 · 711 · 193 Discriminant
Eigenvalues 2+  1 5- 7-  2  6 -5 19+ Hecke eigenvalues for primes up to 20
Equation [1,0,1,-10363,889498] [a1,a2,a3,a4,a6]
Generators [-103:982:1] Generators of the group modulo torsion
j -17941516933339/39546534860 j-invariant
L 5.3776602789432 L(r)(E,1)/r!
Ω 0.48876079359532 Real period
R 0.25006005677157 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 126350cc1 25270x1 Quadratic twists by: 5 -19


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations