Cremona's table of elliptic curves

Curve 25641k1

25641 = 32 · 7 · 11 · 37



Data for elliptic curve 25641k1

Field Data Notes
Atkin-Lehner 3- 7- 11- 37+ Signs for the Atkin-Lehner involutions
Class 25641k Isogeny class
Conductor 25641 Conductor
∏ cp 40 Product of Tamagawa factors cp
deg 234240 Modular degree for the optimal curve
Δ -181199029824558207 = -1 · 36 · 7 · 1110 · 372 Discriminant
Eigenvalues  1 3-  2 7- 11-  4 -4  0 Hecke eigenvalues for primes up to 20
Equation [1,-1,0,-481356,130284499] [a1,a2,a3,a4,a6]
j -16919824733903238337/248558339951383 j-invariant
L 3.2105225650084 L(r)(E,1)/r!
Ω 0.32105225650082 Real period
R 1 Regulator
r 0 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 2849a1 Quadratic twists by: -3


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations