Cremona's table of elliptic curves

Curve 2580a1

2580 = 22 · 3 · 5 · 43



Data for elliptic curve 2580a1

Field Data Notes
Atkin-Lehner 2- 3- 5- 43- Signs for the Atkin-Lehner involutions
Class 2580a Isogeny class
Conductor 2580 Conductor
∏ cp 36 Product of Tamagawa factors cp
deg 1152 Modular degree for the optimal curve
Δ -1548000000 = -1 · 28 · 32 · 56 · 43 Discriminant
Eigenvalues 2- 3- 5-  0 -5 -3 -3  4 Hecke eigenvalues for primes up to 20
Equation [0,1,0,275,-625] [a1,a2,a3,a4,a6]
Generators [5:30:1] Generators of the group modulo torsion
j 8951619584/6046875 j-invariant
L 3.8237296581704 L(r)(E,1)/r!
Ω 0.85462594333619 Real period
R 0.12428210675694 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 10320t1 41280b1 7740a1 12900b1 Quadratic twists by: -4 8 -3 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations