Cremona's table of elliptic curves

Curve 26145g1

26145 = 32 · 5 · 7 · 83



Data for elliptic curve 26145g1

Field Data Notes
Atkin-Lehner 3- 5+ 7+ 83+ Signs for the Atkin-Lehner involutions
Class 26145g Isogeny class
Conductor 26145 Conductor
∏ cp 8 Product of Tamagawa factors cp
deg 13824 Modular degree for the optimal curve
Δ 222363225 = 37 · 52 · 72 · 83 Discriminant
Eigenvalues -1 3- 5+ 7+  2  4  0  2 Hecke eigenvalues for primes up to 20
Equation [1,-1,1,-2273,-41128] [a1,a2,a3,a4,a6]
j 1780800847561/305025 j-invariant
L 1.3829264507342 L(r)(E,1)/r!
Ω 0.69146322536706 Real period
R 1 Regulator
r 0 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 8715k1 Quadratic twists by: -3


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations