Cremona's table of elliptic curves

Curve 26400bm1

26400 = 25 · 3 · 52 · 11



Data for elliptic curve 26400bm1

Field Data Notes
Atkin-Lehner 2- 3+ 5+ 11- Signs for the Atkin-Lehner involutions
Class 26400bm Isogeny class
Conductor 26400 Conductor
∏ cp 16 Product of Tamagawa factors cp
deg 12288 Modular degree for the optimal curve
Δ -2475000000 = -1 · 26 · 32 · 58 · 11 Discriminant
Eigenvalues 2- 3+ 5+ -4 11-  0  2 -2 Hecke eigenvalues for primes up to 20
Equation [0,-1,0,242,-1988] [a1,a2,a3,a4,a6]
Generators [12:50:1] Generators of the group modulo torsion
j 1560896/2475 j-invariant
L 3.6484906277718 L(r)(E,1)/r!
Ω 0.76414640276926 Real period
R 1.1936490882342 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 26400r1 52800cm2 79200bf1 5280h1 Quadratic twists by: -4 8 -3 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations