Cremona's table of elliptic curves

Curve 26418p4

26418 = 2 · 3 · 7 · 17 · 37



Data for elliptic curve 26418p4

Field Data Notes
Atkin-Lehner 2- 3- 7+ 17- 37- Signs for the Atkin-Lehner involutions
Class 26418p Isogeny class
Conductor 26418 Conductor
∏ cp 576 Product of Tamagawa factors cp
Δ 128954888314241472 = 26 · 312 · 7 · 172 · 374 Discriminant
Eigenvalues 2- 3- -2 7+  0  2 17-  4 Hecke eigenvalues for primes up to 20
Equation [1,0,0,-711309,230199633] [a1,a2,a3,a4,a6]
Generators [-186:18963:1] Generators of the group modulo torsion
j 39801428687094688723537/128954888314241472 j-invariant
L 8.7340003337458 L(r)(E,1)/r!
Ω 0.33071362313722 Real period
R 0.73359880999266 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 4 Number of elements in the torsion subgroup
Twists 79254j4 Quadratic twists by: -3


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations