Cremona's table of elliptic curves

Curve 26445g1

26445 = 3 · 5 · 41 · 43



Data for elliptic curve 26445g1

Field Data Notes
Atkin-Lehner 3- 5+ 41+ 43+ Signs for the Atkin-Lehner involutions
Class 26445g Isogeny class
Conductor 26445 Conductor
∏ cp 4 Product of Tamagawa factors cp
deg 23808 Modular degree for the optimal curve
Δ 3388265625 = 3 · 56 · 412 · 43 Discriminant
Eigenvalues -1 3- 5+  4 -2 -2  4 -2 Hecke eigenvalues for primes up to 20
Equation [1,0,0,-4476,114855] [a1,a2,a3,a4,a6]
j 9917449778202049/3388265625 j-invariant
L 1.3831775133761 L(r)(E,1)/r!
Ω 1.3831775133764 Real period
R 1 Regulator
r 0 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 79335m1 Quadratic twists by: -3


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations