Cremona's table of elliptic curves

Curve 26520h1

26520 = 23 · 3 · 5 · 13 · 17



Data for elliptic curve 26520h1

Field Data Notes
Atkin-Lehner 2+ 3- 5- 13- 17- Signs for the Atkin-Lehner involutions
Class 26520h Isogeny class
Conductor 26520 Conductor
∏ cp 260 Product of Tamagawa factors cp
deg 212160 Modular degree for the optimal curve
Δ -12881070699344640 = -1 · 28 · 313 · 5 · 135 · 17 Discriminant
Eigenvalues 2+ 3- 5-  2 -6 13- 17-  6 Hecke eigenvalues for primes up to 20
Equation [0,1,0,-13345,-5497117] [a1,a2,a3,a4,a6]
Generators [263:3042:1] Generators of the group modulo torsion
j -1026767289066496/50316682419315 j-invariant
L 7.2788478556296 L(r)(E,1)/r!
Ω 0.17493380139348 Real period
R 0.16003521590734 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 53040n1 79560bl1 Quadratic twists by: -4 -3


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations