Cremona's table of elliptic curves

Curve 26640cc1

26640 = 24 · 32 · 5 · 37



Data for elliptic curve 26640cc1

Field Data Notes
Atkin-Lehner 2- 3- 5- 37- Signs for the Atkin-Lehner involutions
Class 26640cc Isogeny class
Conductor 26640 Conductor
∏ cp 12 Product of Tamagawa factors cp
deg 17280 Modular degree for the optimal curve
Δ 236326636800 = 28 · 36 · 52 · 373 Discriminant
Eigenvalues 2- 3- 5-  1 -3 -4  0  4 Hecke eigenvalues for primes up to 20
Equation [0,0,0,-1632,-9844] [a1,a2,a3,a4,a6]
Generators [-10:74:1] Generators of the group modulo torsion
j 2575826944/1266325 j-invariant
L 5.6617071988031 L(r)(E,1)/r!
Ω 0.7897180094973 Real period
R 0.59743975388623 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 6660e1 106560ef1 2960i1 Quadratic twists by: -4 8 -3


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations