Cremona's table of elliptic curves

Curve 26862x1

26862 = 2 · 3 · 112 · 37



Data for elliptic curve 26862x1

Field Data Notes
Atkin-Lehner 2- 3- 11- 37- Signs for the Atkin-Lehner involutions
Class 26862x Isogeny class
Conductor 26862 Conductor
∏ cp 528 Product of Tamagawa factors cp
deg 1520640 Modular degree for the optimal curve
Δ 4.140659021034E+20 Discriminant
Eigenvalues 2- 3-  0  2 11- -4 -2  8 Hecke eigenvalues for primes up to 20
Equation [1,0,0,-4470408,-3504218112] [a1,a2,a3,a4,a6]
Generators [-1098:9540:1] Generators of the group modulo torsion
j 5577108481460841625/233729407061568 j-invariant
L 10.676407510129 L(r)(E,1)/r!
Ω 0.10409622728477 Real period
R 0.77699141636964 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 80586l1 2442f1 Quadratic twists by: -3 -11


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations