Cremona's table of elliptic curves

Curve 27255f1

27255 = 3 · 5 · 23 · 79



Data for elliptic curve 27255f1

Field Data Notes
Atkin-Lehner 3- 5+ 23- 79- Signs for the Atkin-Lehner involutions
Class 27255f Isogeny class
Conductor 27255 Conductor
∏ cp 40 Product of Tamagawa factors cp
deg 207360 Modular degree for the optimal curve
Δ -406713318712875 = -1 · 34 · 53 · 235 · 792 Discriminant
Eigenvalues -2 3- 5+ -3 -4  0 -5 -2 Hecke eigenvalues for primes up to 20
Equation [0,1,1,-44896,3772960] [a1,a2,a3,a4,a6]
Generators [-115:-2726:1] [-1334:20627:8] Generators of the group modulo torsion
j -10008208248523853824/406713318712875 j-invariant
L 4.3877812896535 L(r)(E,1)/r!
Ω 0.52806161865221 Real period
R 0.20773055334212 Regulator
r 2 Rank of the group of rational points
S 0.99999999999981 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 81765k1 Quadratic twists by: -3


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations