Cremona's table of elliptic curves

Curve 2739c4

2739 = 3 · 11 · 83



Data for elliptic curve 2739c4

Field Data Notes
Atkin-Lehner 3+ 11+ 83- Signs for the Atkin-Lehner involutions
Class 2739c Isogeny class
Conductor 2739 Conductor
∏ cp 4 Product of Tamagawa factors cp
Δ -7972946883 = -1 · 38 · 114 · 83 Discriminant
Eigenvalues  1 3+ -2  0 11+ -6 -6  4 Hecke eigenvalues for primes up to 20
Equation [1,1,0,239,-3956] [a1,a2,a3,a4,a6]
j 1499944011623/7972946883 j-invariant
L 0.6596153037922 L(r)(E,1)/r!
Ω 0.6596153037922 Real period
R 1 Regulator
r 0 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 43824bk3 8217j4 68475c3 30129d3 Quadratic twists by: -4 -3 5 -11


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations