Cremona's table of elliptic curves

Curve 28140q1

28140 = 22 · 3 · 5 · 7 · 67



Data for elliptic curve 28140q1

Field Data Notes
Atkin-Lehner 2- 3- 5- 7+ 67- Signs for the Atkin-Lehner involutions
Class 28140q Isogeny class
Conductor 28140 Conductor
∏ cp 84 Product of Tamagawa factors cp
deg 21504 Modular degree for the optimal curve
Δ -10257030000 = -1 · 24 · 37 · 54 · 7 · 67 Discriminant
Eigenvalues 2- 3- 5- 7+  1  5 -6 -8 Hecke eigenvalues for primes up to 20
Equation [0,1,0,-190,4913] [a1,a2,a3,a4,a6]
Generators [26:-135:1] Generators of the group modulo torsion
j -47659369216/641064375 j-invariant
L 7.1625955669601 L(r)(E,1)/r!
Ω 1.0901551653201 Real period
R 0.078217301130456 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 112560by1 84420i1 Quadratic twists by: -4 -3


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations