Cremona's table of elliptic curves

Curve 29040ck1

29040 = 24 · 3 · 5 · 112



Data for elliptic curve 29040ck1

Field Data Notes
Atkin-Lehner 2- 3+ 5- 11+ Signs for the Atkin-Lehner involutions
Class 29040ck Isogeny class
Conductor 29040 Conductor
∏ cp 8 Product of Tamagawa factors cp
deg 50688 Modular degree for the optimal curve
Δ -8488611687600 = -1 · 24 · 32 · 52 · 119 Discriminant
Eigenvalues 2- 3+ 5-  2 11+ -6 -2 -4 Hecke eigenvalues for primes up to 20
Equation [0,-1,0,1775,136600] [a1,a2,a3,a4,a6]
Generators [-70:2775:8] Generators of the group modulo torsion
j 16384/225 j-invariant
L 4.8214108460074 L(r)(E,1)/r!
Ω 0.54433739072336 Real period
R 4.4286970986875 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 7260r1 116160hj1 87120ds1 29040cm1 Quadratic twists by: -4 8 -3 -11


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations