Cremona's table of elliptic curves

Curve 29925bh1

29925 = 32 · 52 · 7 · 19



Data for elliptic curve 29925bh1

Field Data Notes
Atkin-Lehner 3- 5- 7+ 19+ Signs for the Atkin-Lehner involutions
Class 29925bh Isogeny class
Conductor 29925 Conductor
∏ cp 6 Product of Tamagawa factors cp
deg 61440 Modular degree for the optimal curve
Δ -3067780078125 = -1 · 310 · 58 · 7 · 19 Discriminant
Eigenvalues  1 3- 5- 7+  2  1 -2 19+ Hecke eigenvalues for primes up to 20
Equation [1,-1,0,-23742,1416541] [a1,a2,a3,a4,a6]
Generators [44:653:1] Generators of the group modulo torsion
j -5197545985/10773 j-invariant
L 6.1928092466545 L(r)(E,1)/r!
Ω 0.80106045884354 Real period
R 1.2884606436978 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 9975f1 29925bb1 Quadratic twists by: -3 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations