Cremona's table of elliptic curves

Curve 29925bj1

29925 = 32 · 52 · 7 · 19



Data for elliptic curve 29925bj1

Field Data Notes
Atkin-Lehner 3- 5- 7- 19+ Signs for the Atkin-Lehner involutions
Class 29925bj Isogeny class
Conductor 29925 Conductor
∏ cp 4 Product of Tamagawa factors cp
deg 8448 Modular degree for the optimal curve
Δ -327229875 = -1 · 39 · 53 · 7 · 19 Discriminant
Eigenvalues  0 3- 5- 7-  2 -2  0 19+ Hecke eigenvalues for primes up to 20
Equation [0,0,1,-1020,-12569] [a1,a2,a3,a4,a6]
j -1287913472/3591 j-invariant
L 1.6893007718797 L(r)(E,1)/r!
Ω 0.42232519297005 Real period
R 1 Regulator
r 0 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 9975g1 29925bg1 Quadratic twists by: -3 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations