Cremona's table of elliptic curves

Curve 3015c1

3015 = 32 · 5 · 67



Data for elliptic curve 3015c1

Field Data Notes
Atkin-Lehner 3- 5- 67- Signs for the Atkin-Lehner involutions
Class 3015c Isogeny class
Conductor 3015 Conductor
∏ cp 4 Product of Tamagawa factors cp
deg 3840 Modular degree for the optimal curve
Δ -648929319075 = -1 · 318 · 52 · 67 Discriminant
Eigenvalues  0 3- 5-  2  6  2  3 -1 Hecke eigenvalues for primes up to 20
Equation [0,0,1,2148,-5823] [a1,a2,a3,a4,a6]
j 1503484706816/890163675 j-invariant
L 2.1319846685778 L(r)(E,1)/r!
Ω 0.53299616714445 Real period
R 1 Regulator
r 0 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 48240bx1 1005b1 15075e1 Quadratic twists by: -4 -3 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations