Cremona's table of elliptic curves

Curve 30800bk2

30800 = 24 · 52 · 7 · 11



Data for elliptic curve 30800bk2

Field Data Notes
Atkin-Lehner 2- 5+ 7+ 11- Signs for the Atkin-Lehner involutions
Class 30800bk Isogeny class
Conductor 30800 Conductor
∏ cp 64 Product of Tamagawa factors cp
Δ 2.90521E+21 Discriminant
Eigenvalues 2-  0 5+ 7+ 11- -2 -6 -4 Hecke eigenvalues for primes up to 20
Equation [0,0,0,-81667675,284056874250] [a1,a2,a3,a4,a6]
Generators [11360193:-10367616:2197] Generators of the group modulo torsion
j 941226862950447171561/45393906250000 j-invariant
L 4.3149720790226 L(r)(E,1)/r!
Ω 0.13465987740726 Real period
R 8.0108718389306 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 4 Number of elements in the torsion subgroup
Twists 3850s2 123200ea2 6160p2 Quadratic twists by: -4 8 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations