Cremona's table of elliptic curves

Curve 30960cd1

30960 = 24 · 32 · 5 · 43



Data for elliptic curve 30960cd1

Field Data Notes
Atkin-Lehner 2- 3- 5- 43- Signs for the Atkin-Lehner involutions
Class 30960cd Isogeny class
Conductor 30960 Conductor
∏ cp 16 Product of Tamagawa factors cp
deg 36864 Modular degree for the optimal curve
Δ 154076774400 = 216 · 37 · 52 · 43 Discriminant
Eigenvalues 2- 3- 5- -4  0 -2 -2 -4 Hecke eigenvalues for primes up to 20
Equation [0,0,0,-9867,-376774] [a1,a2,a3,a4,a6]
Generators [-58:20:1] Generators of the group modulo torsion
j 35578826569/51600 j-invariant
L 4.5423499034368 L(r)(E,1)/r!
Ω 0.47906131120188 Real period
R 2.3704428834176 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 3870y1 123840ey1 10320s1 Quadratic twists by: -4 8 -3


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations