Cremona's table of elliptic curves

Curve 3120u2

3120 = 24 · 3 · 5 · 13



Data for elliptic curve 3120u2

Field Data Notes
Atkin-Lehner 2- 3- 5+ 13+ Signs for the Atkin-Lehner involutions
Class 3120u Isogeny class
Conductor 3120 Conductor
∏ cp 64 Product of Tamagawa factors cp
Δ 5607014400 = 214 · 34 · 52 · 132 Discriminant
Eigenvalues 2- 3- 5+  0  0 13+ -6  0 Hecke eigenvalues for primes up to 20
Equation [0,1,0,-536,2964] [a1,a2,a3,a4,a6]
Generators [-20:78:1] Generators of the group modulo torsion
j 4165509529/1368900 j-invariant
L 3.7694514573735 L(r)(E,1)/r!
Ω 1.2474723236977 Real period
R 0.75541785291881 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 4 Number of elements in the torsion subgroup
Twists 390a2 12480ce2 9360bs2 15600bf2 Quadratic twists by: -4 8 -3 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations