Cremona's table of elliptic curves

Curve 31350bh4

31350 = 2 · 3 · 52 · 11 · 19



Data for elliptic curve 31350bh4

Field Data Notes
Atkin-Lehner 2- 3+ 5+ 11+ 19- Signs for the Atkin-Lehner involutions
Class 31350bh Isogeny class
Conductor 31350 Conductor
∏ cp 24 Product of Tamagawa factors cp
Δ 2815376953125000 = 23 · 3 · 512 · 113 · 192 Discriminant
Eigenvalues 2- 3+ 5+ -2 11+ -2  6 19- Hecke eigenvalues for primes up to 20
Equation [1,1,1,-4257963,-3383596719] [a1,a2,a3,a4,a6]
Generators [72078:6607939:8] Generators of the group modulo torsion
j 546398303575251662569/180184125000 j-invariant
L 6.6947634479299 L(r)(E,1)/r!
Ω 0.10509912296374 Real period
R 10.616586290385 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 94050bl4 6270g4 Quadratic twists by: -3 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations