Cremona's table of elliptic curves

Curve 31416q4

31416 = 23 · 3 · 7 · 11 · 17



Data for elliptic curve 31416q4

Field Data Notes
Atkin-Lehner 2- 3- 7- 11+ 17- Signs for the Atkin-Lehner involutions
Class 31416q Isogeny class
Conductor 31416 Conductor
∏ cp 32 Product of Tamagawa factors cp
Δ 61561285632 = 210 · 38 · 72 · 11 · 17 Discriminant
Eigenvalues 2- 3- -2 7- 11+ -2 17- -4 Hecke eigenvalues for primes up to 20
Equation [0,1,0,-195504,33207120] [a1,a2,a3,a4,a6]
Generators [984:28188:1] Generators of the group modulo torsion
j 807036020920430788/60118443 j-invariant
L 5.8876544933201 L(r)(E,1)/r!
Ω 0.8426845832958 Real period
R 3.4933916022844 Regulator
r 1 Rank of the group of rational points
S 0.99999999999999 (Analytic) order of Ш
t 4 Number of elements in the torsion subgroup
Twists 62832g4 94248l4 Quadratic twists by: -4 -3


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations