Cremona's table of elliptic curves

Curve 3146j1

3146 = 2 · 112 · 13



Data for elliptic curve 3146j1

Field Data Notes
Atkin-Lehner 2- 11+ 13- Signs for the Atkin-Lehner involutions
Class 3146j Isogeny class
Conductor 3146 Conductor
∏ cp 14 Product of Tamagawa factors cp
deg 336 Modular degree for the optimal curve
Δ -2214784 = -1 · 27 · 113 · 13 Discriminant
Eigenvalues 2-  0 -1  1 11+ 13- -2 -6 Hecke eigenvalues for primes up to 20
Equation [1,-1,1,32,3] [a1,a2,a3,a4,a6]
Generators [3:9:1] Generators of the group modulo torsion
j 2803221/1664 j-invariant
L 4.6425937179192 L(r)(E,1)/r!
Ω 1.5851779029023 Real period
R 0.20919660587438 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 25168p1 100672a1 28314n1 78650a1 Quadratic twists by: -4 8 -3 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations