Cremona's table of elliptic curves

Curve 31800bb1

31800 = 23 · 3 · 52 · 53



Data for elliptic curve 31800bb1

Field Data Notes
Atkin-Lehner 2- 3- 5- 53- Signs for the Atkin-Lehner involutions
Class 31800bb Isogeny class
Conductor 31800 Conductor
∏ cp 32 Product of Tamagawa factors cp
deg 133120 Modular degree for the optimal curve
Δ 695466000000000 = 210 · 38 · 59 · 53 Discriminant
Eigenvalues 2- 3- 5-  2  4 -6  0  2 Hecke eigenvalues for primes up to 20
Equation [0,1,0,-29208,1433088] [a1,a2,a3,a4,a6]
Generators [24:864:1] Generators of the group modulo torsion
j 1377888404/347733 j-invariant
L 7.6071756553636 L(r)(E,1)/r!
Ω 0.47694476866039 Real period
R 1.9937255200246 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 63600k1 95400n1 31800k1 Quadratic twists by: -4 -3 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations