Cremona's table of elliptic curves

Curve 32110bg1

32110 = 2 · 5 · 132 · 19



Data for elliptic curve 32110bg1

Field Data Notes
Atkin-Lehner 2- 5- 13+ 19- Signs for the Atkin-Lehner involutions
Class 32110bg Isogeny class
Conductor 32110 Conductor
∏ cp 2 Product of Tamagawa factors cp
deg 17952 Modular degree for the optimal curve
Δ -4585468550 = -1 · 2 · 52 · 136 · 19 Discriminant
Eigenvalues 2- -1 5-  1  0 13+ -7 19- Hecke eigenvalues for primes up to 20
Equation [1,1,1,250,2985] [a1,a2,a3,a4,a6]
j 357911/950 j-invariant
L 1.9276826260078 L(r)(E,1)/r!
Ω 0.96384131300555 Real period
R 1 Regulator
r 0 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 190b1 Quadratic twists by: 13


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations