Cremona's table of elliptic curves

Curve 32536d1

32536 = 23 · 72 · 83



Data for elliptic curve 32536d1

Field Data Notes
Atkin-Lehner 2- 7- 83+ Signs for the Atkin-Lehner involutions
Class 32536d Isogeny class
Conductor 32536 Conductor
∏ cp 2 Product of Tamagawa factors cp
deg 6048 Modular degree for the optimal curve
Δ -156237872 = -1 · 24 · 76 · 83 Discriminant
Eigenvalues 2-  1  0 7- -1  4  3 -4 Hecke eigenvalues for primes up to 20
Equation [0,1,0,-163,-1058] [a1,a2,a3,a4,a6]
Generators [417:503:27] Generators of the group modulo torsion
j -256000/83 j-invariant
L 6.5814377610995 L(r)(E,1)/r!
Ω 0.65688869631489 Real period
R 5.0095532150432 Regulator
r 1 Rank of the group of rational points
S 0.99999999999999 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 65072e1 664c1 Quadratic twists by: -4 -7


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations