Cremona's table of elliptic curves

Curve 32538v1

32538 = 2 · 3 · 11 · 17 · 29



Data for elliptic curve 32538v1

Field Data Notes
Atkin-Lehner 2- 3- 11+ 17- 29+ Signs for the Atkin-Lehner involutions
Class 32538v Isogeny class
Conductor 32538 Conductor
∏ cp 48 Product of Tamagawa factors cp
deg 345600 Modular degree for the optimal curve
Δ 2171982570280512 = 26 · 3 · 115 · 174 · 292 Discriminant
Eigenvalues 2- 3- -4  4 11+  4 17-  0 Hecke eigenvalues for primes up to 20
Equation [1,0,0,-32415,-137319] [a1,a2,a3,a4,a6]
j 3766713835900494961/2171982570280512 j-invariant
L 4.6539853549646 L(r)(E,1)/r!
Ω 0.38783211291458 Real period
R 1 Regulator
r 0 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 97614q1 Quadratic twists by: -3


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations