Cremona's table of elliptic curves

Curve 33418o1

33418 = 2 · 72 · 11 · 31



Data for elliptic curve 33418o1

Field Data Notes
Atkin-Lehner 2+ 7- 11- 31+ Signs for the Atkin-Lehner involutions
Class 33418o Isogeny class
Conductor 33418 Conductor
∏ cp 96 Product of Tamagawa factors cp
deg 33868800 Modular degree for the optimal curve
Δ -1.9940585636608E+27 Discriminant
Eigenvalues 2+  2  0 7- 11-  4  6 -2 Hecke eigenvalues for primes up to 20
Equation [1,1,0,-3703407040,-86774309941248] [a1,a2,a3,a4,a6]
Generators [46966123070527721088:-17450321894411203339072:287143308322317] Generators of the group modulo torsion
j -47746310242879869583883397625/16949218129017342902272 j-invariant
L 6.5146700504113 L(r)(E,1)/r!
Ω 0.0096763139133301 Real period
R 28.052478233459 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 4774e1 Quadratic twists by: -7


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations