Cremona's table of elliptic curves

Curve 33880d4

33880 = 23 · 5 · 7 · 112



Data for elliptic curve 33880d4

Field Data Notes
Atkin-Lehner 2+ 5+ 7- 11- Signs for the Atkin-Lehner involutions
Class 33880d Isogeny class
Conductor 33880 Conductor
∏ cp 48 Product of Tamagawa factors cp
Δ 3.7977636300877E+24 Discriminant
Eigenvalues 2+  0 5+ 7- 11- -2 -2  0 Hecke eigenvalues for primes up to 20
Equation [0,0,0,-395171843,3022165163358] [a1,a2,a3,a4,a6]
Generators [11234:23800:1] Generators of the group modulo torsion
j 1881029584733429900898/1046747344575625 j-invariant
L 4.5267536915942 L(r)(E,1)/r!
Ω 0.077613491772651 Real period
R 4.860359528785 Regulator
r 1 Rank of the group of rational points
S 1.0000000000001 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 67760c4 3080c3 Quadratic twists by: -4 -11


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations