Cremona's table of elliptic curves

Curve 34056y1

34056 = 23 · 32 · 11 · 43



Data for elliptic curve 34056y1

Field Data Notes
Atkin-Lehner 2- 3- 11- 43+ Signs for the Atkin-Lehner involutions
Class 34056y Isogeny class
Conductor 34056 Conductor
∏ cp 4 Product of Tamagawa factors cp
deg 33280 Modular degree for the optimal curve
Δ -85801503744 = -1 · 210 · 311 · 11 · 43 Discriminant
Eigenvalues 2- 3-  3  1 11- -4  7  4 Hecke eigenvalues for primes up to 20
Equation [0,0,0,-291,14222] [a1,a2,a3,a4,a6]
j -3650692/114939 j-invariant
L 3.5975763812199 L(r)(E,1)/r!
Ω 0.89939409530436 Real period
R 1 Regulator
r 0 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 68112j1 11352a1 Quadratic twists by: -4 -3


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations