Cremona's table of elliptic curves

Curve 34122n1

34122 = 2 · 3 · 112 · 47



Data for elliptic curve 34122n1

Field Data Notes
Atkin-Lehner 2- 3+ 11- 47+ Signs for the Atkin-Lehner involutions
Class 34122n Isogeny class
Conductor 34122 Conductor
∏ cp 18 Product of Tamagawa factors cp
deg 103680 Modular degree for the optimal curve
Δ -170224959708672 = -1 · 29 · 3 · 119 · 47 Discriminant
Eigenvalues 2- 3+  2  0 11-  4  1 -6 Hecke eigenvalues for primes up to 20
Equation [1,1,1,1268,628013] [a1,a2,a3,a4,a6]
Generators [61:-999:1] Generators of the group modulo torsion
j 127263527/96087552 j-invariant
L 8.7511695355719 L(r)(E,1)/r!
Ω 0.44654480557547 Real period
R 1.0887509590062 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 102366p1 3102a1 Quadratic twists by: -3 -11


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations