Cremona's table of elliptic curves

Curve 34720t2

34720 = 25 · 5 · 7 · 31



Data for elliptic curve 34720t2

Field Data Notes
Atkin-Lehner 2- 5+ 7+ 31- Signs for the Atkin-Lehner involutions
Class 34720t Isogeny class
Conductor 34720 Conductor
∏ cp 4 Product of Tamagawa factors cp
Δ 843834880 = 29 · 5 · 73 · 312 Discriminant
Eigenvalues 2-  0 5+ 7+  0 -4 -6  4 Hecke eigenvalues for primes up to 20
Equation [0,0,0,-18283,-951522] [a1,a2,a3,a4,a6]
Generators [22274:1173897:8] Generators of the group modulo torsion
j 1320067469776392/1648115 j-invariant
L 3.8370606680362 L(r)(E,1)/r!
Ω 0.41057048188481 Real period
R 9.3456807961946 Regulator
r 1 Rank of the group of rational points
S 1.0000000000002 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 34720g2 69440bo2 Quadratic twists by: -4 8


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations