Cremona's table of elliptic curves

Curve 35178t1

35178 = 2 · 3 · 11 · 13 · 41



Data for elliptic curve 35178t1

Field Data Notes
Atkin-Lehner 2- 3- 11- 13+ 41- Signs for the Atkin-Lehner involutions
Class 35178t Isogeny class
Conductor 35178 Conductor
∏ cp 1680 Product of Tamagawa factors cp
deg 3171840 Modular degree for the optimal curve
Δ -1.9779703499821E+21 Discriminant
Eigenvalues 2- 3- -3 -1 11- 13+  7 -1 Hecke eigenvalues for primes up to 20
Equation [1,0,0,-5744202,5714228196] [a1,a2,a3,a4,a6]
Generators [39822:7912728:1] Generators of the group modulo torsion
j -20961040081180242099475873/1977970349982125543616 j-invariant
L 8.627953586415 L(r)(E,1)/r!
Ω 0.14410791302164 Real period
R 0.035637783872487 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 105534h1 Quadratic twists by: -3


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations