Cremona's table of elliptic curves

Curve 35224c3

35224 = 23 · 7 · 17 · 37



Data for elliptic curve 35224c3

Field Data Notes
Atkin-Lehner 2- 7+ 17+ 37- Signs for the Atkin-Lehner involutions
Class 35224c Isogeny class
Conductor 35224 Conductor
∏ cp 2 Product of Tamagawa factors cp
Δ 3700164970944512 = 211 · 7 · 178 · 37 Discriminant
Eigenvalues 2-  0 -2 7+  4  6 17+  4 Hecke eigenvalues for primes up to 20
Equation [0,0,0,-38891,-386426] [a1,a2,a3,a4,a6]
Generators [7302650223646534:322727265179652102:3701576406709] Generators of the group modulo torsion
j 3176443176226434/1806721177219 j-invariant
L 4.9462731121523 L(r)(E,1)/r!
Ω 0.36739106765546 Real period
R 26.926474526 Regulator
r 1 Rank of the group of rational points
S 0.99999999999998 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 70448f3 Quadratic twists by: -4


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations