Cremona's table of elliptic curves

Curve 35376p1

35376 = 24 · 3 · 11 · 67



Data for elliptic curve 35376p1

Field Data Notes
Atkin-Lehner 2- 3+ 11+ 67- Signs for the Atkin-Lehner involutions
Class 35376p Isogeny class
Conductor 35376 Conductor
∏ cp 8 Product of Tamagawa factors cp
deg 30720 Modular degree for the optimal curve
Δ 32276496384 = 214 · 35 · 112 · 67 Discriminant
Eigenvalues 2- 3+ -2  0 11+ -2  0  0 Hecke eigenvalues for primes up to 20
Equation [0,-1,0,-5544,-156816] [a1,a2,a3,a4,a6]
Generators [100:528:1] Generators of the group modulo torsion
j 4601630708137/7880004 j-invariant
L 3.5716969146125 L(r)(E,1)/r!
Ω 0.55332703771096 Real period
R 3.2274736920389 Regulator
r 1 Rank of the group of rational points
S 1.0000000000002 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 4422g1 106128by1 Quadratic twists by: -4 -3


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations