Cremona's table of elliptic curves

Curve 35880c4

35880 = 23 · 3 · 5 · 13 · 23



Data for elliptic curve 35880c4

Field Data Notes
Atkin-Lehner 2+ 3- 5+ 13- 23+ Signs for the Atkin-Lehner involutions
Class 35880c Isogeny class
Conductor 35880 Conductor
∏ cp 24 Product of Tamagawa factors cp
Δ 813572398080 = 210 · 312 · 5 · 13 · 23 Discriminant
Eigenvalues 2+ 3- 5+  0 -4 13- -2  0 Hecke eigenvalues for primes up to 20
Equation [0,1,0,-32136,-2227680] [a1,a2,a3,a4,a6]
Generators [219:1134:1] Generators of the group modulo torsion
j 3584369109383716/794504295 j-invariant
L 6.0921330215488 L(r)(E,1)/r!
Ω 0.35657940052734 Real period
R 2.8474878304517 Regulator
r 1 Rank of the group of rational points
S 1.0000000000001 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 71760c4 107640bg4 Quadratic twists by: -4 -3


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations