Cremona's table of elliptic curves

Curve 35904d1

35904 = 26 · 3 · 11 · 17



Data for elliptic curve 35904d1

Field Data Notes
Atkin-Lehner 2+ 3+ 11+ 17+ Signs for the Atkin-Lehner involutions
Class 35904d Isogeny class
Conductor 35904 Conductor
∏ cp 2 Product of Tamagawa factors cp
deg 5120 Modular degree for the optimal curve
Δ -969408 = -1 · 26 · 34 · 11 · 17 Discriminant
Eigenvalues 2+ 3+  0 -3 11+  4 17+  2 Hecke eigenvalues for primes up to 20
Equation [0,-1,0,-33,99] [a1,a2,a3,a4,a6]
Generators [6:9:1] Generators of the group modulo torsion
j -64000000/15147 j-invariant
L 4.1922202416212 L(r)(E,1)/r!
Ω 2.6556505662225 Real period
R 0.7893019313124 Regulator
r 1 Rank of the group of rational points
S 1.0000000000001 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 35904cu1 561c1 107712cf1 Quadratic twists by: -4 8 -3


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations