Cremona's table of elliptic curves

Curve 366c1

366 = 2 · 3 · 61



Data for elliptic curve 366c1

Field Data Notes
Atkin-Lehner 2+ 3- 61+ Signs for the Atkin-Lehner involutions
Class 366c Isogeny class
Conductor 366 Conductor
∏ cp 3 Product of Tamagawa factors cp
deg 228 Modular degree for the optimal curve
Δ -863502336 = -1 · 219 · 33 · 61 Discriminant
Eigenvalues 2+ 3-  1 -2  6  0  3  0 Hecke eigenvalues for primes up to 20
Equation [1,0,1,-913,-10780] [a1,a2,a3,a4,a6]
j -84033427451401/863502336 j-invariant
L 1.3021591909708 L(r)(E,1)/r!
Ω 0.43405306365693 Real period
R 1 Regulator
r 0 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 2928g1 11712f1 1098i1 9150r1 Quadratic twists by: -4 8 -3 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations