Cremona's table of elliptic curves

Curve 37026bh1

37026 = 2 · 32 · 112 · 17



Data for elliptic curve 37026bh1

Field Data Notes
Atkin-Lehner 2- 3- 11- 17- Signs for the Atkin-Lehner involutions
Class 37026bh Isogeny class
Conductor 37026 Conductor
∏ cp 18 Product of Tamagawa factors cp
deg 36864 Modular degree for the optimal curve
Δ -117576951624 = -1 · 23 · 310 · 114 · 17 Discriminant
Eigenvalues 2- 3- -1  3 11- -4 17-  5 Hecke eigenvalues for primes up to 20
Equation [1,-1,1,-23,16503] [a1,a2,a3,a4,a6]
Generators [-19:108:1] Generators of the group modulo torsion
j -121/11016 j-invariant
L 9.0408933869893 L(r)(E,1)/r!
Ω 0.83671607502373 Real period
R 0.6002894767123 Regulator
r 1 Rank of the group of rational points
S 0.99999999999995 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 12342a1 37026i1 Quadratic twists by: -3 -11


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations