Cremona's table of elliptic curves

Curve 37485b1

37485 = 32 · 5 · 72 · 17



Data for elliptic curve 37485b1

Field Data Notes
Atkin-Lehner 3+ 5+ 7- 17+ Signs for the Atkin-Lehner involutions
Class 37485b Isogeny class
Conductor 37485 Conductor
∏ cp 8 Product of Tamagawa factors cp
deg 18432 Modular degree for the optimal curve
Δ -13230218295 = -1 · 33 · 5 · 78 · 17 Discriminant
Eigenvalues -1 3+ 5+ 7-  0  0 17+ -4 Hecke eigenvalues for primes up to 20
Equation [1,-1,1,-83,5562] [a1,a2,a3,a4,a6]
Generators [2:-75:1] [6:69:1] Generators of the group modulo torsion
j -19683/4165 j-invariant
L 5.6005175328501 L(r)(E,1)/r!
Ω 1.0272543695362 Real period
R 2.7259643273056 Regulator
r 2 Rank of the group of rational points
S 1.0000000000002 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 37485o1 5355b1 Quadratic twists by: -3 -7


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations