Cremona's table of elliptic curves

Curve 37488l3

37488 = 24 · 3 · 11 · 71



Data for elliptic curve 37488l3

Field Data Notes
Atkin-Lehner 2+ 3- 11- 71+ Signs for the Atkin-Lehner involutions
Class 37488l Isogeny class
Conductor 37488 Conductor
∏ cp 12 Product of Tamagawa factors cp
Δ -7728403719168 = -1 · 210 · 33 · 11 · 714 Discriminant
Eigenvalues 2+ 3- -2  0 11-  2 -2  4 Hecke eigenvalues for primes up to 20
Equation [0,1,0,4656,-52668] [a1,a2,a3,a4,a6]
Generators [138:1455:8] Generators of the group modulo torsion
j 10898566808252/7547269257 j-invariant
L 6.2425492251376 L(r)(E,1)/r!
Ω 0.41871718378335 Real period
R 4.9695828647659 Regulator
r 1 Rank of the group of rational points
S 0.99999999999988 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 18744f4 112464d3 Quadratic twists by: -4 -3


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations