Cremona's table of elliptic curves

Curve 37884f1

37884 = 22 · 3 · 7 · 11 · 41



Data for elliptic curve 37884f1

Field Data Notes
Atkin-Lehner 2- 3+ 7- 11- 41+ Signs for the Atkin-Lehner involutions
Class 37884f Isogeny class
Conductor 37884 Conductor
∏ cp 18 Product of Tamagawa factors cp
deg 21600 Modular degree for the optimal curve
Δ -304435824 = -1 · 24 · 3 · 73 · 11 · 412 Discriminant
Eigenvalues 2- 3+ -1 7- 11- -5 -6  5 Hecke eigenvalues for primes up to 20
Equation [0,-1,0,-1086,14169] [a1,a2,a3,a4,a6]
Generators [-32:123:1] [-13:161:1] Generators of the group modulo torsion
j -8861210362624/19027239 j-invariant
L 7.5266311608872 L(r)(E,1)/r!
Ω 1.7273511507564 Real period
R 0.24207363709559 Regulator
r 2 Rank of the group of rational points
S 0.99999999999998 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 113652s1 Quadratic twists by: -3


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations