Cremona's table of elliptic curves

Curve 3795j3

3795 = 3 · 5 · 11 · 23



Data for elliptic curve 3795j3

Field Data Notes
Atkin-Lehner 3- 5- 11+ 23- Signs for the Atkin-Lehner involutions
Class 3795j Isogeny class
Conductor 3795 Conductor
∏ cp 24 Product of Tamagawa factors cp
Δ 83198040688125 = 33 · 54 · 118 · 23 Discriminant
Eigenvalues  1 3- 5-  0 11+  6 -6  0 Hecke eigenvalues for primes up to 20
Equation [1,0,1,-10938,34531] [a1,a2,a3,a4,a6]
j 144703951876575001/83198040688125 j-invariant
L 3.110897370297 L(r)(E,1)/r!
Ω 0.5184828950495 Real period
R 1 Regulator
r 0 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 60720bs4 11385g3 18975a3 41745bf4 Quadratic twists by: -4 -3 5 -11


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations